The EDD E3 ubiquitin ligase ubiquitinates and up-regulates β-catenin
نویسندگان
چکیده
Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. β-Catenin activity is tightly regulated via a multiprotein complex that includes the kinase glycogen synthase kinase-3β (GSK-3β). GSK-3β phosphorylates β-catenin, marking it for ubiquitination and degradation via the proteasome. Thus in regulation of the Wnt pathway, the ubiquitin system is known to be involved mostly in mediating the turnover of β-catenin, resulting in reduced Wnt signaling levels. Here we report that an arm of the ubiquitin system increases β-catenin protein levels. We show that GSK-3β directly interacts with the E3 ubiquitin ligase identified by differential display (EDD) that also binds β-catenin. Expression of EDD leads to enhanced nuclear accumulation of both GSK-3β and β-catenin and results in up-regulation of β-catenin expression levels and activity. Importantly, EDD ubiquitinates β-catenin through Lys29- or Lys11-linked ubiquitin chains, leading to enhanced stability of β-catenin. Our results demonstrate a role for the ubiquitin system in up-regulation of the Wnt signaling pathway, suggesting that EDD could function as a colorectal oncogene.
منابع مشابه
c-Cbl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation.
Regulation of transcriptionally active nuclear β-catenin during the Wnt-on phase is crucial to ensure controlled induction of Wnt target genes. Several ubiquitin E3 ligases are known to regulate cytosolic β-catenin during the Wnt-off phase, but little is known about the fate of active nuclear β-catenin in the Wnt-on phase. We now describe ubiquitination of active β-catenin in the Wnt-on phase b...
متن کاملHECT domain-containing E3 ubiquitin ligase NEDD4L negatively regulates Wnt signaling by targeting dishevelled for proteasomal degradation.
Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiq...
متن کاملSTAT3 Potentiates SIAH-1 Mediated Proteasomal Degradation of β-Catenin in Human Embryonic Kidney Cells
The β-catenin functions as an adhesion molecule and a component of the Wnt signaling pathway. In the absence of the Wnt ligand, β-catenin is constantly phosphorylated, which designates it for degradation by the APC complex. This process is one of the key regulatory mechanisms of β-catenin. The level of β-catenin is also controlled by the E3 ubiquitin protein ligase SIAH-1 via a phosphorylation-...
متن کاملThe F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell
Defects in β-catenin regulation contribute to the neoplastic transformation of mammalian cells. Dysregulation of β-catenin can result from missense mutations that affect critical sites of phosphorylation by glycogen synthase kinase 3β (GSK3β). Given that phosphorylation can regulate targeted degradation of β-catenin by the proteasome, β-catenin might interact with an E3 ubiquitin ligase complex...
متن کاملWWP2-WWP1 Ubiquitin Ligase Complex Coordinated by PPM1G Maintains the Balance between Cellular p73 and ΔNp73 Levels
The balance between transcription factor p73 and its functionally opposing N-terminally truncated ΔNp73 isoform is critical for cell survival, but the precise mechanism that regulates their levels is not clear. In our study, we identified WWP2, an E3 ligase, as a novel p73-associated protein that ubiquitinates and degrades p73. In contrast, WWP2 heterodimerizes with another E3 ligase, WWP1, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 22 شماره
صفحات -
تاریخ انتشار 2011